
INTUITIVE, INTERACTIVE, AND ROBUST

MODIFICATION AND OPTIMIZATION OF FINITE

ELEMENT MODELS

Katrin Bidmon Dirc Rose Thomas Ertl

Visualization and Interactive Systems Group, University of Stuttgart
e-mail: (bidmon|rose|ertl)@vis.uni-stuttgart.de

web: http://www.vis.uni-stuttgart.de/

ABSTRACT

Virtual prototyping and numerical simulations are increasingly replacing real mock-ups and experiments in industrial product
development. Many of these simulations, e.g. for the purpose of crash worthiness explorations, are based on Finite Element
Analysis (FEA). In order to accelerate the development cycle, simulation engineers want to be able to modify their FE models
without going back to the CAD department and without remeshing. Currently, there are no intuitive tools available that offer the
possibility of modification and processing of FE components while maintaining the properties relevant to the simulation. In this
paper we present interactive algorithms for intuitive, fast, and robust editing of FE models and appropriate visualization techniques
to support engineers in understanding these models. New kinds of manipulators and feedback mechanisms enable easy manipulation
of FE models. To ensure a good quality of the deformed mesh we use relaxation extended by algorithms preserving the features of
the FE surface. For areas of large deformation we provide interactive methods to perform a remeshing in situ.
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1. INTRODUCTION

(a) (b)

Figure 1: Tools for interactive editing: (a) interactive stretching and deformation of a car component; (b) 1D parameter
texture revealing node relocation caused by relaxation.

Computer aided design (CAD) has evolved to an irreplace-
able tool in the daily work routine of a design engineer, and
it has definitely sped up the development cycle. The adop-
tion of computer technology in this field is also useful when
the design is transfered to the final production stage, e.g. by
steering computerized numerical control (CNC) machines.
However, the development cycle has been decelerated for a
long time by the need for experiments to prove the structural
and (aero-) dynamic performance of the designed model. To

carry out these experiments, many expensive prototypes used
to be built in a time-consuming process. During the last two
decades this procedure has changed and an increasing num-
ber of test runs with real prototypes is being replaced by vir-
tual simulations. Thanks to the growing processing power
of modern parallel computers and to efficient algorithms it
is now possible to calculate complex non-linear and highly
dynamic processes like crash worthiness simulations within
two or three days. In general, the analytical surfaces must
be converted into an FE mesh for such a simulation. For this
purpose, many conversion algorithms (e.g. [1, 2]) have been



developed, but they are far from being perfect and most of
them are tailored to a specific kind of simulation or preser-
vation of a particular model property. Therefore, a lot of ex-
pert knowledge and manual work is still required to achieve
a high quality mesh. Some years ago, an improvement in the
numerical algorithms was introduced, which alleviated this
task by supporting individually meshed components instead
of a single consistent mesh for a whole car. This made it pos-
sible to exchange only some parts without having to remesh
the complete car model. Additionally, the assembly of the
different car components can be reproduced more realisti-
cally by this approach due to the introduction of spotwelds or
adhesive bondings. This change in the computational work-
flow combined with other efficiency gains results in a huge
acceleration of the complete development cycle and even al-
lows for stochastic analysis of model variants.

The traditional workflow changes by introducing this new
approach. The engineers do not any longer need fast and
reliable tools for meshing a complete car body at once and
they do not have to care about congruent nodes to connect
miscellaneous parts. Instead, they need appropriate tools
to create interconnections between the various car compo-
nents in a fast and easy way. These interconnections—e.g.
spotwelds—are usually placed at flanges, i.e. where the sur-
faces of two or more components run parallel at a very small
distance. Sometimes, adjacent materials may penetrate or
perforate each other at such flange areas, because of sam-
pling discrepancies in the discretization. In general, such
meshing inconsistencies can be detected automatically and
our preprocessing tool highlights affected regions with a
color textures corresponding to the degree of inconsistency.
As long as the penetrating area is well-defined, i.e. the af-
fected parts are not folding or interfering in a complex man-
ner, the perforation can be solved automatically. However,
often manual modification is needed. Usually this means that
the engineer has to ask the CAD department for corrected
components, which have to be remeshed from scratch. This
remeshing might reintroduce problems that arise from im-
perfect sampling in the meshing algorithms. Therefore it can
be very profitable to have a comfortable editor that is able
to manipulate FE meshes directly. Such an editor also offers
the possibility to create variants of existing components very
fast—e.g. the integration of crimpings for structural stiffen-
ing. In general these modification operations are focused on
a certain region of a component and therefore the editing tool
has to provide methods the engineer can use to select the
three-dimensional surface region he wants to interact with.
When performing an editing operation some of the finite ele-
ments might be deformed a lot. However, the elements must
meet certain shape criteria to guarantee reasonable simula-
tion results. Therefore our tool detects violations of these
criteria and uses special glyphs to highlight the concerned
elements. Once the modification is completed intelligent al-
gorithms try to straighten out these errors without destroying
the properties and features of the part. This mesh smoothing
is not sufficient where strong deformation occurs, and we
will present an approach to restructure the affected elements

to fix these erroneous regions—comparable to a remeshing
in situ. We will go into detail of the entire procedure in sec-
tion 3 and 4. Current graphics hardware can support these
preprocessing methods by using textures to highlight prob-
lematic regions or to compare various modeling states. The
latter also can be used to compare the states before and after
an automatic or manual modification.

Section 5 will show how the algorithms presented in this
paper can be applied to a typical problem and it will close
with some conclusions. In the following section we will dis-
cuss various previous work that provides the basis for our
improvements.

2. RELATED WORK

Numerical simulations, such as crash worthiness explo-
rations, work on FE meshes. So if the engineers want to
interact with their computation model most applications can
not be used because they are geared towards traditional de-
sign jobs. In another approach the engineers have the possi-
bility to build complex constructions from simple geometric
primitives, but neither of the approaches is developed to in-
teract with FE models as they rise different needs in the tools:
Other prerequisites such as the shape of the finite elements
have to be provided and other fast and intuitive interaction
and editing methods are needed—especially during prelimi-
nary design stages.

Therefore, we focused on intuitive interaction techniques,
keeping them simple and laconic and requiring only one
or two mouse clicks, a behavior which is also suggested
by [3]. In [4] it is shown how perforations and penetra-
tions of interfering parts can be removed automatically and
how individually meshed components can be connected by
interactively placing adhesive bondings or spotwelds along
curved flanges. As mentioned above sometimes ambigu-
ous tasks arise and so a fully automatic solution cannot al-
ways be provided. To manually edit such problematic areas
[5] suggested directly manipulated free-form deformation.
In this approach the final deformation is defined by spline
volumes and interaction is steered by sliders and buttons.
As this is not very intuitive, a better way is to use three-
dimensional widgets the modification can be controlled in
situ with. SGI’s Inventor [6] demonstrates with its manipu-
lators how to use widgets for 3D interaction. Various authors
[7, 8, 9] presented 3D widgets that can be used for manipu-
lation, but some of them are either technically immature or
not suitable for FE modeling operations. A solution using
simple and intuitive 3D glyphs for FE models was presented
by [10], but it lacked support for direct manipulation.

Our recent approach to simple and at the same time versatile
modification of FE meshes uses mouse drags as input and a
variety of basis functions to describe the deformation of the
surrounding surface. It is similar to the approach presented
in [11], which was developed independently and which
works on triangulated surfaces. For smoothing meshes, i.e.



after the modification step, various algorithms have been
developed, most of them based on relaxation. The most
common method is Laplacian smoothing, a simple recursive
method where the nodes are directly adjusted depending on
their adjacent nodes they have a common edge with. This
method has been improved and extended by several authors
to fit some special needs, e.g. [2, 1]. Another technique is
the so-called optimization-based smoothing where the nodes
are moved depending on the minimization of a special dis-
tortion metric. Also combinations of these techniques were
presented, e.g. [12]. In [13, 14] a more detailed overview is
given. Another approach is physically-based smoothing as
presented e.g. in [15] where the edges in the mesh are repre-
sented by springs and the forces applied at the nodes depend
on the ratio between the desired and the actual length of the
edge. This approach is quite similar to the one we developed
in this paper. As we have to deal with both quadrilaterals and
triangles, we also have to take care of the diagonals in quadri-
laterals. To avoid parallelograms, springs are added along
the diagonals of quadrilaterals—unlike [15]—but their de-
sired length is adapted to be

√
2 times longer than the edges

of the element. Most smoothing and relaxation algorithms
have been developed for smoothly curved or even closed sur-
faces, but in the case of car parts the surface is bounded and
often contains holes or visible edges. Additionally, in order
to preserve the significance of the numerical simulations, it is
important that the readjusted nodes really lie on the surface
originally modeled in CAD. This is why the most important
improvement in our relaxation technique is that surface fea-
tures (boundaries and visible edges) as well as the shape of
the surface itself are detected and preserved.

In the following sections we show how we extended this
knowledge by our own ideas to significantly improve the in-
tuitive modification of FE meshes. By implementing our al-
gorithms into the commercially available preprocessing ap-
plication scFEMod [16] we have made this functionality
available for productive use in the CAE departments of ma-
jor German car manufacturers.

3. SELECTING AND EDITING IN 3D

The authors of [9] suggest editing operations by manipulat-
ing a skeleton line affecting the elements up to a certain dis-
tance from this line. This kind of selection during the mod-
ification process itself is rather limited. We decided to de-
couple the manipulation from the selection mechanism. In
this way it is possible to select an arbitrary set of elements or
nodes and perform various editing operations on them after-
wards.

3.1 Selection Mechanisms

Selection mechanisms can be implemented in various ways.
The simplest one is to provide a text box, where the user
can enter the unique labels of the nodes. Surprisingly, some
engineers know their datasets so well, that they prefer this

cryptic method over anything else. Therefore, we also imple-
mented such a dialog, but we extended it with boolean and
range selection operations for improved convenience. How-
ever, with the widespread utilization of numerical simulation
techniques also the number and the frequency of new mod-
els increases. Therefore, it gets more and more difficult to
deal with a vast amount of different and continuously up-
dated node IDs. Because of this, we suggest to use a much
more intuitive method, usually utilized for selection in two-
dimensional paint programs. There the user can drag the
mouse, encircling the pixels he wants to select with a free-
hand curve and release the button to complete the action. In
our application the engineer can draw a freehand line on the
screen (see Fig. 2(a)), thereby cutting a sort of pyramidal
frustum out of the 3D scene. To guarantee that the polygon
is always closed, the start and end points are always con-
nected (thin line in Fig. 2(a)). All nodes of the FE mesh that
lie inside the pyramidal frustum are marked as selected and
are highlighted via a white octahedron accordingly, as seen
in Fig. 2(b). Hidden nodes are rendered transparent, so that
at any time all selected nodes can be seen. It is unnecessary

(a) (b) (c)

(d)

Figure 2: Freehand Selections: (a) encircling nodes;
(b) selection without occlusion test, hidden nodes are
rendered transparent; (c) selection originated from a sub-
traction operation; (d) selection of a region delimited by
features.

to perform an expensive calculation in 3D to decide whether
a node is outside or inside the freehand frustum. Instead, we
project the node coordinates into the two-dimensional screen
space and test the coordinates against the freehand outline.
This problem can be solved very easily and fast using the
point containment test presented in [17].

The user can choose whether he wants to select all the nodes
inside the selection frustum of a component or if he only
wants to select the currently visible nodes. Hidden nodes
can be filtered out by shooting rays into the scene for every
potential node candidate and checking for occlusion. This
can be accelerated by rendering the car model with a unique
color assigned to every element. We can then check the pix-



els in the neighborhood of the 2D coordinate of a potentially
selected node for their colors or rather element labels. If
none of these elements is adjacent to the node then it is oc-
cluded otherwise we can continue with the more precise ray
intersection test. For greater convenience the user can add
or subtract new selections to/from the existing ones, e.g. the
selection in Fig. 2(c) has been achieved by selecting the node
cluster with occlusion culling enabled and then deselecting
the nodes in the center via subtraction.

Sometimes, the engineer wants to modify a complete seg-
ment of a component instead of a manually selected subset.
Such a segment is delimited by features of the part, e.g. sharp
edges as seen in Fig. 2(d). The user just has to click onto a
part and all nodes belonging to the same region are selected
at once. We use an approach presented in [18] to achieve
a robust detection of the features of the FE mesh so that it
is guaranteed that the algorithm does not choose bogus ele-
ments or nodes.

3.2 Mesh Modification

The simplest editing operation on a selection of nodes is a
parallel translation. But in 3D even this cannot be accom-
plished as in 2D, where mouse movement can be mapped
directly to a corresponding translation. Given 2D-only in-
put, e.g. a mouse, 3D interaction with three or more DOF
has to be split into multiple 2D movement actions. In our
application we use the manipulator widget seen in Fig. 3(a).
It consists of a disk and an arrow. The user can either click
on the disk as in Fig. 3(b) and drag it around, whereby the
displacements are constrained to the surface of the finite ele-
ments, or he can drag the arrow and shift the selection along
the local surface normal like in Fig. 3(c). During interac-
tion, the active part of the widget is highlighted in green and
the modified surface is rendered as wire frame representa-
tion (white lines in Fig. 3(b) and 3(c)). The FE surface then
is updated when the user releases the mouse button.

(a) (b) (c)

Figure 3: Manipulator for 3D movement: (a) neutral
appearance when initially locked to node; (b) disk for
movement on surface selected; (c) arrow for displacement
along local normal selected and lifted by dragging with
the mouse.

In most cases, simple parallel translations are not flexible
enough. We implemented another approach that offers the
possibility of much more complex deformations and which
contains parallel translations as a special case. The interac-
tion is kept as simple as before, but instead of moving all
nodes along the same vector, we introduce a weighting func-
tion that describes the position of a selected node relative to
the border of the selection and to the position where the user
started dragging. If di,border denotes the geodesic distance
of a certain node i to the border of the selected region and
di,origin the geodesic distance of the node to the point where
the user grabbed the surface, then the weight wi can be cal-
culated by

wi =
di,border

di,origin + di,border
. (1)

The range of values of all wi is guaranteed to be within [0,1].
If we use these weights directly to scale the displacement
vector we derive by the mouse movement along the widget
arrow, then we obtain a deformation shaped like a cone or
pyramid—depending on the shape of the selection. But the
user can also choose from a variety of basis functions, e.g.
when the engineer chooses a remapping of the weights simi-
lar to a Gaussian then he is able to achieve a result as shown
in Fig. 4(a). Here, the Gaussian is flattened in the middle
part, whereby the amount is configurable, and applied only
into one direction. In the perpendicular direction the weights
are ignored and set to constant 1 instead.

Rotations can be achieved by first defining the rotation axis
and then describing an arc with the mouse which defines how
much the selected region should be twisted (Fig. 4(b)). Fur-
thermore, you can see that the rotation is performed to its
whole extent at the free end without any weighting function
applied. Here, free ends are areas between the axis of ro-
tation and border segments where the boundary of the car
component and of the selection match exactly, e.g. the left
half of the component shown in Fig. 4(b). If the user wants
to leave the free end fixed he can accomplish this by dese-
lecting the outer row of nodes. This behavior in treating free
endings applies not only to rotations but also to displacement
operations and it is quite intuitive and enables many differ-
ent kinds of modifications. For example it is very easy to
elongate a certain section of a car component just by defin-
ing the section to be stretched by selecting its nodes and then
dragging at the free border of the selection.

Each of these operations can be combined with an additional
damping function that is applied to the border region of the
selection, i.e. the area where the selected nodes flank uns-
elected nodes. This damping term can be multiplied with
the weighting function introduced in the last paragraph. Its
goal is to achieve a smooth transition to the surrounding sur-
face and to prevent the generation of badly shaped elements
to a certain extent. This way it is possible to achieve the
same deformation as presented in Fig. 4(a) by applying a
parallel translation—i.e. the weighting function is set to con-
stant 1—combined with an appropriate damping function. It
turned out that such an extra damping function is more intu-
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Figure 4: More complex modifications: (a) creating a
bulge; (b) rotation with free ending.

itive and easier to handle than a vast pool of various mapping
functions for the weighting term. The possibility to combine
these two functions opens up a variety of complex deforma-
tions while keeping the two components rather simple and
limiting them to a manageable number of parameters.

4. MESH OPTIMIZATION

Modification of a mesh can result in disadvantageous defor-
mation of the finite elements. In general, it might lead to
extreme angles between edges, or edges that vary too much
within one element. Because of this the elements may be-
come of poor quality for later computations. For FE methods
“good elements” means uniform quadrilaterals and, where
triangles cannot be avoided, equilateral triangles.

4.1 Visualization of Erroneous Elements

To give the engineer instantaneous feedback about the qual-
ity of the current FE mesh, the numerically relevant proper-
ties of each element are checked during the modification op-
eration. Erroneous elements are highlighted immediately by
using red glyphs which correspond to the error type. Crit-
ical elements are marked with yellow glyphs. An exam-

ple for erroneous elements can be found in Fig. 3(c), where
quadrilateral elements have been warped, i.e. where not all
nodes of an element lie within the same plane. When warp-
ing occurs, the quadrilateral is bent around its two diago-
nals and we symbolize the larger of both bending angles
by a thicker diagonal, respectively. Also problematic are
edges that are too short because the minimum edge length
of a crash dataset has a direct influence on the duration of
the simulation time steps. If the edge length is chosen too
small, shorter and therefore more simulation steps have to be
calculated to achieve reliable results. If the engineer wants
to limit the simulation effort this also limits the minimum
edge length and edges violating this constraint are marked
as shown in Fig. 5(a). The shape of finite elements is also
important. Consequently, too small or too large angles are
highlighted as can be seen in Fig. 5(b), 5(c) and 5(e). An-
other shape criterion is the ratio of the edge lengths of a fi-
nite element. This has to be evaluated only for quadrilaterals
as for triangles it is checked implicitly via the angle criteria.
Moderate irregularities still produce acceptable results in re-
gions of low stress and are therefore marked only in light
gray (yellow, Fig. 5(c)). An aspect ratio worse than a certain
factor (usually ≈1:4) is marked in dark gray (red). Since tri-
angles tend to produce less exact results than quadrilaterals,
they should be avoided too, especially when they are clus-

(a) (b)

(c)

(d)

(e)

Figure 5: Various finite elements marked as erroneous:
(a) edge too short; (b) angle too large (in triangle);
(c) angle too large (in quadrilateral) and bad edge length
ratios; (d) many adjacent triangles; (e) angles too small,
in quadrilaterals this error is often combined with angles
that are too large.



Figure 6: Examples of errors dynamically displayed while
editing the mesh of a car component.

tered as in Fig. 5(d). Some of the discussed errors are pre-
sented in Fig. 6 on the FE surface of an authentic simulation
model of a car component.

4.2 Mesh Relaxation

After editing the mesh, the nodes normally have to be read-
justed, e.g. by relaxation, to make the mesh computable
again. The relaxation model presented in this paper is based
on a spring-mass model, where the edges of the mesh are rep-
resented by springs. To avoid parallelograms being classified
as well shaped quadrilaterals additional springs are added
along the diagonals of each quad in the mesh (see Fig. 7).

Figure 7: Spring-mass model for relaxation.

The rest length l0 of the springs, and therefore the length
of the edge represented by this spring, is set to the average
length of the adjacent springs, where the diagonal ones are
weighted with 1/

√
2 according to the length of the diagonals

in a square: let n ∈ � 3 be the current node, l0 is calculated

by

l0 =
∑‖nuc,i −n‖/

√
2+∑‖nc, j −n‖

#nuc,i +#nc, j

where nuc,i ∈
� 3 are the adjacent nodes not connected to n

(i.e. the diagonals in a quad), and nc,i ∈
� 3 are those con-

nected to n by a common edge in the mesh. Accordingly
#nuc,i denotes the number of adjacent nodes not connected
to n and #nuc,i the number of nodes connected to n. Conse-
quently, the force Fs ∈

� 3 applied in this node is

Fs =∑(nuc,i −n)
(

||nuc,i −n||− l0/
√

2
)

/||nuc,i −n||

+∑(nc, j −n)
(

||nc, j −n||− l0
)

/||nc, j −n|| .

Assuming the nodes have unit mass we get the ordinary dif-
ferential equation (ODE) of second order ξ̈ = cs Fs − γξ̇ ,
where cs is the spring constant, γ the damping constant, and
ξ ∈ � 3 the node coordinates. This equation can be rewritten
as a system of 2 ODEs for computation. Just solving this sys-
tem would lead to well shaped elements, but the features of
the underlying surface would be mostly lost, i.e. the border-
ing curve would change as well as edges within the surface,
and the surface itself would also get flattened. To avoid this
we introduced some control mechanisms: after calculating
the new position of each node by solving the ODE system
we check if these coordinates are on the original surface or
not. As we do not have the parametric representation of the
surface but only the mesh, we interpolate the original sur-
face and the surface feature lines onto which we project the
nodes. Inner nodes belonging to a continuously curved part
of the surface get projected onto the original surface interpo-
lated by the coordinates of the neighbors in the last step. If a
node is on a continuously curved surface or not is decided by
calculating the angle between the normals of the adjacent el-
ements adjoining in this node. If one or more of these angles
differ too much from π , then the neighboring edges “in line”
with the processed one are checked too, and if at least one
of them also matches this criterion the feature line resulting
from these edges is classified as a visible edge of the surface
which is designated to be preserved. The described crease
angle can be changed in the user interface. The detected fea-
ture lines are then computed according to the interpolation of
the surface using the old coordinates of the adjacent nodes
involved and the current node is moved constrained to this
visible edge (see Fig. 8) by projecting the newly computed
node position onto this curve. This procedure also preserves
the bordering curve. Nodes where two or even more of such
feature lines adjoin are classified to be corners that do not get
moved at all. With this method the characteristic features of
the surface concerning later computations stay unchanged.
To get a visual feedback of that fact, the Euclidean distance
between the originally modeled surface and the surface de-
fined by the relaxed mesh is depicted in Fig. 11(c): distances
smaller than 0.05mm are mapped to a transparent texture,
distances between 0.05mm and 1mm are mapped to a color
gradient beginning with dark (red) for 0.05mm up to light
(yellow) for 1mm in the texture. Thus, as it can be seen in



(a) (b)

Figure 8: Preservation of surface features: (a) original
mesh, (b) relaxed mesh where the misplaced nodes were
readjusted along the surface feature lines.

this figure, the shape of the surface is preserved very well,
due to the implemented control mechanisms.

Since relaxing the mesh by solving the ODE system with
these boundary conditions for one whole meshed car part
with 500–1000 elements takes up to one or two minutes on a
standard PC, we developed an algorithm that produces sim-
ilar results but with interactive performance (Fig. 9): The
mesh is relaxed hierarchically starting at a node selected by

(a) (b)

(c)

Figure 9: Comparing mesh relaxation methods: (a) orig-
inal mesh; (b) hierarchically relaxed mesh; (c) non-
hierarchically relaxed mesh.

the user e.g. in the region of highest irregularity. The dis-
placement is calculated—similar to Laplacian smoothing—
by adjusting each node “in the middle” of its neighbors—but
with the same constraints on the node placement as explained
in the method described above. In each iteration the nodes
are moved starting with the selected node defining the center
of the relaxation area. Then relaxation proceeds in circles
around that center node by adjusting the adjacent nodes of
those moved in the previous round and so on until no new
node, in respect of the set of nodes moved in the current or
the previous round, gets displaced further than a user-defined
threshold thereby ending the current iteration step. In the
next iteration step only nodes which were moved themselves
and whose neighbors were displaced in the last iteration are
checked for displacement again. With this procedure many
nodes can be ignored in most of the iteration steps, and a lot
of computing time can be saved. The disadvantage of this
method is the fact that the mesh is not completely relaxed
after the iterations and the method still moves nodes when
called another time. But after the first or at least second time
the new movements are very small. Comparing the results of
both methods shows that even the first call to the hierarchi-
cal method already leads to acceptable results—see Fig. 9
and Fig. 11(d) where the non-hierarchical method solving
the ODE system is compared to the result of the hierarchical
method executed once. In Fig. 11(d) differences in the range
from 1mm (dark, red) to 5mm (light, yellow) are mapped,
whereas Fig. 11(b) depicts the total node displacement in the
same range using the non-hierarchical method (see above).

In order to give more control to the engineers, it is also possi-
ble to restrict both relaxation methods to a group of selected
nodes as depicted in Fig. 10. The user can mark nodes that
shall be relaxed using the selection mechanisms described in
section 3.1. Non-selected nodes do not get affected by the
relaxation as can be seen in Fig. 10 where the selected nodes
(white octahedrons) were moved, but all the others, such as
those in the encircled area kept their position although the
elements are very badly shaped.

To be able to evaluate the editing operations that have been
performed, two kinds of visual feedback are provided: A
simple one level undo function has been implemented, with
a toggle for direct comparison. The other possibility is to
start the application in a multiple view mode, where the
user can have two windows with synchronized views. So
the original part can be kept in one window while the corre-
sponding part shown in the other window is being modified.
This multiview mode can also be used to map geometrical
differences between the two parts displayed via 1D textures
(see Fig. 11). The user can decide whether he wants to map
the node displacement caused by relaxation (Fig. 11(b) and
Fig. 1(b)), or the Euclidean distance between the new node
positions and the originally modeled surface (see Fig. 11(c)).
In general, engineers do not want to cope with the displace-
ment of single nodes and therefore the latter visualization
method is the more significant one, as this one shows the de-
formation of the surface caused by the relaxation. This kind



(a)

(b)

Figure 10: Relaxing only selected nodes: (a) node se-
lection (white marked nodes); (b) relaxed region. Unse-
lected nodes (encircled) are not adjusted.

of texture mapping can also be used to visualize distances
between arbitrary parts to detect e.g. penetrating flanges [4]
as the range of distances to be mapped can be set by the
user. The calculation is based on a bounding volume hierar-
chy [19] and therefore performs very well.

4.3 Mesh Restructuring

Relaxation is not always able to eliminate all errors in the
mesh. Especially in cases in which a part gets elongated too
much or the user creates a deep buckle, relaxation alone will
not be able to produce a valid FE mesh. Nonetheless, re-
laxation still is a very powerful tool which will be also used
as final polishing for the restructuring process which will be
described in more detail in this section. The goal of restruc-
turing is to perform small changes in the local topology of
the mesh in a way that only erroneous elements and directly
adjacent elements will be taken into account. It can be seen
as a confined variant of remeshing, which guarantees to pre-
vent unnecessary changes in the FE structure as a whole.

First, we determine the elements which were the worst ones
before the relaxation procedure and try to fix them using
one of the following operations: it is easy to repair warped
quadrilaterals—introduced in section 4.1—by splitting each
into two triangles along their “thick” bending diagonals.
Short edges are collapsed to a common node placed at the
center of the original edge as can be seen in Fig. 12(a). As a
result, affected triangles will collapse to an edge and quadri-
laterals will be converted into triangles. Elements containing

(a) (b)

(c) (d)

Figure 11: Comparing mesh relaxation methods:
(a) original mesh; (b) node displacement from original
to non-hierarchically relaxed mesh (< 1mm 7→ darkest
(blue), > 5mm 7→ lightest (yellow)); (c) euclidean dis-
tance between non-hierarchically relaxed mesh and orig-
inal (< 0.05mm 7→ darkest (blue), > 1mm 7→ lightest
(yellow)); (d) difference between hierarchically and non-
hierarchically relaxed mesh (< 1mm 7→ darkest (blue),
> 5mm 7→ lightest (yellow)).

large angles can be repaired by splitting them into two el-
ements, whereas the newly formed edge contains the node
with the large angle. A triangle is subdivided into two tri-
angles, as depicted in Fig. 12(b). Quadrilaterals are either
divided into a triangle and a quadrilateral or they are split
into two quadrilaterals (see Fig. 12(c)). The latter method
is preferred when the original quadrilateral has a bad aspect
ratio. Additionally the algorithm has to take care of adja-
cent elements and check if they must be subdivided, too, in
order to prevent hanging nodes as shown in Fig. 12(b) and
12(c). The operation presented in Fig. 12(d) usually is one
of the last steps and tries to conjoin triangles into quadrilat-
erals. This decreases the number of triangles that might be
produced by previous repair operations.

Elements containing too small angles cannot be fixed in a di-
rect way and it cannot be guaranteed that it is always possible
to repair such an error. We suggest the strategy to divide all
quadrilaterals containing too small angles into two triangles
as depicted by the solid gray (green) line in Fig. 12(e). Ad-



ditionally we split all the elements that are directly adjacent
to such an erroneous element. In the majority of cases the
operation presented in Fig. 12(d) is able to find valid combi-
nations of adjacent triangles and merges them in such a way
that a different variation of quadrilaterals is composed (e.g.
by removing the dashed line in Fig. 12(e)). In doing so it is
assured that only quadrilaterals of acceptable quality will be
formed.

Finally, the neighborhood of erroneous elements is relaxed
once again. If the resulting mesh still is not sufficient for
simulation the algorithm undoes the relaxation and continues
the restructuring also on less critical elements. This proce-
dure is repeated until an FE mesh valid for crash worthiness
simulations evolves, and experience shows that the algorithm
converges very fast.

(a) (b)

(c)

(d)

(e)

Figure 12: Finite elements from Fig. 5 have been fixed:
(a) edge is collapsed to common node; (b) triangle and
adjacent quadrilateral is divided; (c) stretched and ad-
jacent elements are divided; (d) adjacent triangles are
merged if possible; (e) quadrilateral is split and triangles
are merged in a different way.

5. RESULTS AND CONCLUSIONS

Fig. 13 shows a simple, yet typical example for a problem
which an engineer often faces. In the original model, seen in
Fig. 13(a), the violet component perforates the orange part.
Our application detects the erroneous area and visualizes it
by marking the region with an alerting texture (Fig. 13(b)).
Since it is a clearly defined perforation, it can be resolved
automatically as shown in Fig. 13(c). In Fig. 13(d) it can

(a) (b)

(c) (d)

(e) (f)

Figure 13: Various stages of repairing and editing a fi-
nite element model: (a) original mesh; (b) perforating
parts are textured; (c) perforations and penetrations are
removed; (d) user performs a modification and erroneous
elements are marked interactively; (e) element errors are
fixed automatically; (f) relaxation smoothes mesh whilst
conserving features.

be seen how the engineer performs a stretching operation by
dragging the 3D widget proposed in this paper. Erroneous
elements are detected interactively and marked with appro-
priate glyphs, in this case two elements have a bad aspect
ratio—yet not too critical for a valid numerical simulation—
and one element contains an angle that is too large. Our pre-
processing tool is able to repair these elements by locally re-
structuring the FE mesh and automatically inserting new ele-
ments (Fig. 13(e)) without the need for remeshing the whole
part. This process is depicted in more detail in Fig. 14, in
which we show how the subsequent repair operations are per-
formed. Then the mesh is smoothed by using our relaxation
approach, which guarantees that features—e.g. chamfers and
sharp edges—are preserved. To compare the new mesh with
the starting mesh one can use distance mapping as mentioned
before.

We developed these methods in direct cooperation with engi-
neers at the BMW AG. Most of our algorithms are no longer
prototypes and have been transfered to the commercially
available crash worthiness preprocessing tool scFEMod.
Therefore, the techniques we presented in this paper are al-
ready being used widely by several German car manufac-
turers and their subcontractors. Due to their simplicity the
presented methods have been quickly accepted and the en-
gineers are now able to solve many mesh-related problems



(a) (b) (c) (d) (e)

Figure 14: Locally restructuring an FE mesh: (a) original mesh; (b) modified mesh with erroneous elements; (c) remove
large angle by splitting quadrilateral into two triangles, additionally subdivide quadrilateral with bad aspect ratio, also see
Fig. 5(c) and 12(c); (d) remove remaining large angles (one is induced by the preceding operation); (e) merge adjacent
triangles, also see Fig. 5(d) and 12(d).

on their own without the need for an additional loop through
the CAD department. Generation of new variations of exist-
ing FE components—e.g. elongations or creation of stiffen-
ing corrugations and folds—is now possible using intuitive
3D widgets. Errors in the mesh that might appear during
these editing operations are detected reliably and on-the-fly
by our algorithms. Relaxation or local element restructur-
ing can then be used to repair critical mesh regions. Al-
though it is not possible to fix all kinds of meshing errors,
our methods are nevertheless very powerful and successfully
produce valid FE meshes in general. The texturing capabil-
ities of standard graphics cards can be used to visualize the
differences between various design stages, or to display er-
roneous regions of an FE mesh. This highlighting technique
can be used also to prove that our methods for mesh repair
and smoothing do not impair the surface and do preserve im-
portant features.

In this paper we demonstrated that there is a need for new
modification methods for FE meshes and we presented so-
lutions that can be operated intuitively. Glyphs and textures
can be used to pinpoint erroneous or critical regions. Expe-
rience shows that our approach helps to vastly accelerate the
development cycle in the automotive industry. We will con-
tinue our work on this field of research in close cooperation
with the engineers, and we will investigate if it is reasonable
to transfer our knowledge into other fields of engineering ap-
plications.
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